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Abstract - Most adaptation methods for speech recognition using hid- 
den Markov models fall into two categories; one is the Bayesian approach, 
where prior distributions for the model parameters are assumed, and the 
other is the transformation based approach, where a predetermined sim- 
ple transformation form is employed to modify the model parameters. 
It is known that the former is better when the amount of data for adap  
tation is large, while the latter is better when the amount of data is 
small. In this paper, we propose a new approach, structural maximum a 

posteriori (SMAP) approach, in which hierarchical priors are introduced 
to combine the two approaches above. The experimental results showed 
SMAP achieved better recognition accuracy than the two approaches for 
both small and large amounts of adaptation data. 

1 Introduction 
Recently, speech recognition using hidden Markov models(HMMs) has 

been successfully applied to various applications. However, it has been re- 
ported that the performance of recognition system is often largely degraded 
when the testing conditions, including speakers, microphones, channels, and 
noise levels, are different from those with which training data are collected. 
Conventionally, these differences have been considered separately, and accord- 
ingly, different approaches have been taken to compensate the degradation. 
However, since it is difficult to distinguish the influence of one factor from the 
other, one method that can be applied to  all the factors is preferable. There 
have been two major adaptation approaches, the Bayesian approach and the 
transformation based approach. But neither of these suits this purpose as is 
explained in the following. 

In the Bayesian adaptation approach(e.g. [l, 2]), prior distrik )U t ' ions are 
assumed for the parameters in HMMs and the maximum a posteriori(MAP) 
estimates for the parameters are calculated instead of the maximum likeli- 
hood(ML) estimates. Since this approach requires less amount of data than 
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ML estimation when the priors are appropriately chosen, it has been widely 
used for compensating the difference in speaker characteristics. When the 
amount of data is extremely small, however, improvement by this adaptation 
is rather small, because the number of parameters to be estimated is usually 
large. 

[3, 5 ,  41) is 
mainly used when the amount of data is small. It has been successfully 
applied to compensate the difference due to microphones, channels, and noise 
levels. In this approach, a simple transformation, such as a shift, or an 
affine transformation, is defined in the acoustic feature space or the HMM 
parameter space and its parameters are estimated using the adaptation data. 
However, the recognition performance does not improve as much compared 
with the improvement obtained with M A P  adaptation when the amount of 
data is large. This is partly because the number of free parameters is too 
small. For this problem, it has been proved effective to divide the acoustic 
space into a number of subspaces and estimate the transformation parameters 
in each subspace. In real use, however, it is rather impractical to optimize 
of the number of subspace for various amounts of data. Shinoda et a1.[6, 71 
proposed the autonomous control of the number of subspaces according to 
the amount of data. 

From the explanation above, it is clear that neither of the two approaches 
can be used to  deal with all differences in various conditions. Chien et a1.[8] 
reported that the combination of these approaches performed well, while the 
number of subspaces were still need to be optimized in their method. Here 
we propose a structural maximum a posteriori (SMAP) approach in which 
hierarchical priors are employed. In this method, a hierarchical structure in 
the parameter space is assumed and the transformation parameters for each 
level in the structure are estimated. The parameters in one level are used as 
the priors for its immediate subordinate levels. The resulting transformation 
parameter, corresponding to each HMM parameter, is a combination of the 
transformation parameters at all levels, in which the weight for each level 
autonomously changes according to the amount of adaptation data used. Ac- 
cordingly, this method is more robust against the change in the amount of 
data than the conventional approaches. Since MAP estimates are calculated 
and it is well known that the MAP estimate is asymptotically equivalent to 
the ML estimate, its recognition performance converges to that of speaker- 
dependent HMMs when the amount of data becomes large. 

On the other hand, transformation based adaptation (e.g. 

2 SMAP Adaptation Using Hierarchical Pri- 
ors 

In this paper, we focus on the adaptation of the parameters of Gaussian 
pdfs in continuous-density(CD) HMMs. It is assumed that each Gaussian 
pdf has a diagonal covariance. Let G = { l V ( p m ,  c;); m = 1, .  . . , M }  be the 
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whole set of the mixture components in CDHMMs, where M is the sum of 
the number of mixture components in all the states of the CDHMMs. In our 
method, a bias A m  for each mean vector p m  and a scaling factor q,n for each 
variance U; are estimated and the pdf parameters are updated by: 

(1) 
(2) 

i im = pm +A,,  m =  l , . . . l M ,  
U; = qmum 2 m = 1, .  . . , M. 

The adaptation process is now described in the following. 

Figure 1: Tree Structure for Gaussian pdfs in  CDHMMs 

Let a tree structure for the set G be given as shown in Fig.1, where K is 
the number of layers. Each node in K-th layer (leaf node) corresponds to one 
mixture component of CDHMMs. The root node corresponds the whole set 
of the Gaussian pdfs, G. Each intermediate node corresponds to  a subset of 
G, each of whose elements corresponds to one of its subordinate leaf nodes. 
There are many ways to construct a tree structure(e.g. [6, 71). 

At each node in the tree, a prior for a bias A and a prior for a, factor r ] ,  
which are shared among the Gaussian pdfs in the corresponding subset, are 
assigned. It is assumed that the prior pdf for each bias is a Gaussian pdf in 
which a diagonal covariance is used and the prior pdf for each scaling factor 
is a beta distribution. 

At first, the ML estimates of the bias and the scaling factor for leach node 
are calculated using the adaptation data. Let Y = ( ~ 1 , .  . . , y ~ }  be a set 
of the data for adaptation and let Ak be the bias at  node I C ,  where the 
corresponding subset of G has Mk pdfs, N ( p 1 ,  g:), . . . , N ( ~ M I ; ,  ~2.). Then, 
the ML estimate for the bias, A k ,  and the scaling factor, &, are estimated 
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using the EM-algorithm [5](in the following, the suffix for the data vector 
dimension is omitted): 

where, rt (mk)  is the posteriori probability of being in the state which contains 
the mixture component mk at time t and using the mixture component mk. 

Next , the MAP estimates[l, 21 for these parameters are calculated using 
a hierarchical Bayes analysis to be explained as follows. For the estimation 
at each node, the pdf for the bias and the scaling factor at its parent node 
are used as the prior distribution. Let NI, . . . , Nk, . . . , NK be a sequence of 
nodes from the root node to the leaf node, where NI is the root node and NK 
is the leaf node. Each node Nk-l is the parent node for node Nk.  Then, the 
MAP estimates at each node are calculated as follows: 

where Tk is the precision of the prior distribution for &, and t k  is the 
hyper-parameter for q k .  It must be noted that Ak and v k  are dependent on 
each other, and thus should be calculated iteratively. 

Finally, by successively applying Eq.(8) from the root node to the leaf 
nodes, the bias AK and the scaling factor T K  for the leaf node NK can be 
expressed as follows: 

K K 

where, 
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These AK and V K  is used to update the corresponding Gaussian pdf in the 
CDHMMs. 

We call this estimation process as the S M A P  method. Eqs.(11) and (12) 
indicate that the parameters estimated by S M A P  can be interpreted as the 
weighted sum of the ML estimates at the different layers of the tree. The 
weight has the following characteristics: 

1. In node N j ,  as data amount becomes larger, rj becomes larger, and 
thus, wf becomes larger. 

2. The weight WT for an ancestor node Nj decays exponentially as j be- 

These are preferable characteristics for adaptation. When the amount of data 
is small, the ML estimates in the upper layers are mainly responsible for the 
resulting pdf. On the other hand, when the amount of data is large, the ML 
estimates in the lower layers are dominant. This control is done autonomously. 

The prior knowledge about the embedded structure in the accnwtic space 
should be used for the construction of the tree. In this study, the Kullback 
divergence between the output pdfs of the mixture components is used as the 
distance measure between the mixture components. The k-means clustering 
algorithm was used for clustering the Gaussian pdfs[9]. 

Although this SMAP approach is not the first to propose tree-based adap- 
tation (e.g.[lO]), we believe the proposed method is theoretically well-defined 
in terms of both the Bayesian framework and the tree construction principle. 
It demonstrated these two properties well as will be clear in the experimental 
result section. 

comes smaller, i.e., the node approaches to  the root node. 

3 Experiments 

3.1 Experimental Conditions 
We experimented with the 991-word DARPA resource management (RM) 

task[ll]. Simultaneous recordings of five non-native speakers were collected 
through two channels: 1) a close talking microphone (MIC), and 2) a tele- 
phone handset over a dial-up line (TEL). The data consisted of 300 utterance 
for adaptation from each speaker (A,B,C,D,E) in each of the two channels 
(MIC and TEL). For testing, we collected 75 utterances from each speaker 
for each of the two channels. 

The speech was first down-sampled from 16 kHz to 8 kHz. For each frame a 
39-dimensional feature vector[l2] was extracted based on a tenth order LPC 
analysis, whose components are 12 cepstral coefficients plus a normalized 
log energy and their first and second time derivatives. For recognition, we 
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used 1769 context dependent units[12]. For all our experiments, we used 
the RM word pair grammar, which gives a perplexity of about 60. Speaker- 
independent models were trained using the NIST/RM SI-109 training set 
consisting of 3990 utterances from 109 native American talkers (31 females 
and 78 males), each providing 30 or 40 utterances. A diagonal covariance was 
used for each mixture Gaussian component. 

In the experiments, only the mean vector, ,U, was modified and the param- 
eter T in Eq.(8) were fixed. The scaling factor 17 was fixed to one. 

3.2 Results 

Fig 2 shows the recognition results for the two channels, MIC and TEL. 
For comparison, we experimented two other methods; one is MAP adaptation 
without tree (MAP)[2], and the other is simple bias estimation using a tree 
without Bayesian method (TREE)[6]. These figures show that the proposed 
SMAP method performed better than MAP and TREE in every data point. 
The recognition rates were highly improved from MAP when the amount of 
data were small, and converged to the same rates as MAP when the amount 
of data became large. It showed better recognition accuracy than TR.EE, not 
only when the amount of data were large but also when the amount of data 
were small. This is probably because the parameter estimation were more 
robust than that in TREE since a weighted sum of parameters in more than 
one layers were used, 

4 Conclusion 
The SMAP approach for adaptation has proposed. Its effectiveness was con- 
firmed by the recognition experiments. 

Several research issues remain to be investigated. First, adaptation for 
variances and other HMM parameters should be examined. Second, the way 
to make a tree structure that well represent the embedded structure in the 
acoustic space should be further studied. Third, unsupervised adaptation 
using this approach should be evaluated. 
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Figure 2: Recognition rates for various amounts of adaptation d a t a  
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